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Abstract

This paper considers a transient heat conduction problem for an infinite medium with two non-overlapping circular cavities. Suddenly
applied, steady Dirichlet type boundary conditions are assumed. The approach is based on superposition and the use of the general solu-
tion to the problem of a single cavity. Application of the Laplace transform results in a semi-analytical solution for the temperature in the
form of a truncated Fourier series. The large-time asymptotic formulae for the solution are obtained by using the analytical solution in
the Laplace domain. The method can be extended to problems with multiple cavities and inhomogeneities.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper presents a semi-analytical solution for a tran-
sient heat conduction problem for an infinite medium con-
taining two circular cavities. This problem occurs in several
engineering applications, for example, heat exchange
between the earth and buried pipes [1], cooling of tunnels
[2], and heat exchange between blood tissue and embedded
blood vessels [3]. The problem is also of interest for model-
ing time-dependent effects due to diffusion processes, such
as unsteady fluid flow [4,5].

As in many other applications, the use of analytical
solutions in transient heat conduction problems is very
beneficial. Such solutions can be used to study possible sin-
gularities, to obtain accurate solution gradients (e.g. heat
fluxes), as well as the asymptotic approximations for the
solutions for small and large values of time. In addition,
knowledge of analytical solutions can provide benchmark
results to test newly developed numerical methods.
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The method of solution presented here for a problem of
two circular cavities is based on the use of the analytical
solution to a corresponding problem of a single cavity
and superposition. The single cavity problem has been
extensively studied and various particular solutions are
available in the literature (e.g. [6]). Analytical and semi-
analytical solutions for the case of multiple cavities are
available only for the steady-state case (e.g. [3,6]).

Transient problems with cavities can be solved by gen-
eral purpose numerical methods such as finite element,
finite difference, and boundary element methods combined
with time-marching schemes. For large-time computations
these approaches can be computationally intensive due to
time-marching and large numbers of degrees of freedom.
To efficiently treat the time convolution involved in the
problem several fast numerical techniques have been
recently developed (see e.g. [7–9] and references therein).

A number of numerical methods based on the use of the
Laplace transform (or Fourier transform) have also been
designed to solve transient problems. In such methods
the original transient problem is transformed to a corre-
sponding non-transient problem in the Laplace domain
(or frequency domain), which is easier to solve. After the
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Nomenclature

m
n

� �
binomial coefficient,

m
n

� �
¼ m!

n!ðm�nÞ!

ak intermediate variable, ak ¼ rk=Rk

akðx; sÞ ðN k þ 1Þ-dimensional vector, Eq. (23)
ak

pmðxÞ vector coefficients of the asymptotic expansion
of akðx; sÞ, Eq. (31)

ApmðxÞ coefficients of the asymptotic expansion ofbT ðx; sÞ, Eq. (29)
Akl

n ðsÞ, Bkl
n ðsÞ Fourier coefficients of the boundary valuebT lðx; sÞjLk

ðk 6¼ lÞ, Eq. (13)
AklðsÞ ðN k þ 1Þ-dimensional vector of Fourier coeffi-

cients Akl
n ðsÞ, Eq. (14)

Bp;i
m�i intermediate coefficients, Appendix D

BklðsÞ N k-dimensional vector of Fourier coefficients
Bkl

n ðsÞ, Eq. (14)
bkðx; sÞ N k-dimensional vector, Eq. (23)
bk

pmðxÞ vector coefficients of the asymptotic expansion
of bkðx; sÞ, Eq. (32)

ck
n; dk

n Fourier coefficients of the function UkðukÞ, Eq.
(5)

ck ðN k þ 1Þ-dimensional vector of Fourier coeffi-
cients ck

n, Eq. (14)
dk N k-dimensional vector of Fourier coefficients dk

n,
Eq. (14)

FklðsÞ ðN k þ 1Þ � ðNl þ 1Þ-dimensional matrix ðk 6¼ lÞ,
Eq. (15)

Fkl
pm matrix coefficients of the asymptotic expansion

of FklðsÞ, Eq. (64)
f ðuÞ integrand matrix-function, Section 6.2
GklðsÞ N k � Nl-dimensional matrix ðk 6¼ lÞ, Eq. (15)
Gkl

pm matrix coefficients of the asymptotic expansion
of GklðsÞ, Eq. (65)

Hk steady-state flux, Eq. (28)
IN N � N -dimensional identity matrix
Inð�Þ; Knð�Þ modified Bessel functions [21]
k; l number of the cavity, k ¼ 1; 2 and l ¼ 1; 2
Lk boundary of the kth cavity
M number of steps in the alternating algorithm,

Eqs. (51) and (52)
M0, M1 numbers of terms in asymptotic series (29) and

(44)
mk

0;�1 1� ðNk þ 1Þ-dimensional matrix, Appendix C
Nk number of terms in the truncated Fourier series,

Eq. (10)
nk annihilating vector, Section 5.1
q transform variable, q ¼ ffiffi

s
p

Rk dimensionless ratio of the radius of the kth cav-
ity to the distance q

rk dimensionless radial polar coordinate ¼ ratio of
the distance between point x and the center of
the kth cavity to the distance q

Rk
npm right-hand side matrices in Eq. (82)

s Laplace transform parameter
t dimensionless time, Eq. (1)
t1 minimum specified time instant, Section 6
tn dimensionless time, at which the solution is

computed, Section 6
T ðx; tÞ dimensionless temperature, Eq. (1)
T sðxÞ steady-state temperature, Eqs. (26) and (27)bT ðx; sÞ Laplace transform of T ðx; tÞbT kðx; sÞ solution to the Laplace-transformed problem

containing only the kth cavity, Eq. (9)
u integration variable, Eq. (26)
UkðsÞ ðN k þ 1Þ � ðNk þ 1Þ-dimensional matrix, Eq.

(19)
Uk

pm matrix coefficients of the asymptotic expansion
of UkðsÞ, Eq. (37)eUk

pm matrix coefficients of the asymptotic expansion
of ½UkðsÞ��1, Eq. (34)

ukðsÞ ðN k þ 1Þ-dimensional vector, Eq. (19)
uk

pm vector coefficients of the asymptotic expansion
of ukðsÞ, Eq. (75)

VkðsÞ N k � Nk-dimensional matrix, Eq. (20)
Vk

pm matrix coefficients of the asymptotic expansion
of VkðsÞ, Eq. (38)eVk

pm matrix coefficients of the asymptotic expansion
of ½VkðsÞ��1, Eq. (35)

vkðsÞ N k-dimensional vector, Eq. (20)
vk

pm vector coefficients of the asymptotic expansion
of vkðsÞ, Eq. (76)

x point in the two-dimensional domain
xm point in the two-dimensional domain, at which

the solution is computed, Section 6
Y k

nðsÞ, Zk
nðsÞ unknown Fourier coefficients, Eq. (10)

YkðsÞ ðN k þ 1Þ-dimensional vector of unknowns, Eq.
(14)

ZkðsÞ N k-dimensional vector of unknowns, Eq. (14)

Greek symbols

ak, bk, b intermediate constants, Eq. (55)
c Euler’s constant, c ¼ 0:5772 . . .
d intermediate integration limit, Eq. (50)
dij Kronecker delta symbol
e predefined accuracy level, Eq. (47)
Hðx; sÞ temperature at point x at time s
H0 uniform initial temperature, H0 ¼ Hðx; 0Þ
j constant thermal diffusivity
KpmðxÞ coefficients of the large-time asymptotic series,

Eq. (44)
lk scalar factor, Appendix C
q distance between the centers of the cavities
s time
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!n components of the generic vectors !Nkþ1 and
!Nk , Eq. (14)

!Nkþ1, !Nk generic vectors, Eq. (14)
UkðukÞ specified boundary temperature at the boundary

Lk

uk polar angle in the coordinate system of the kth
cavity ð�p < uk 6 pÞ, Fig. 1b

wðnÞðxÞ polygamma function [21]

Subscripts

k; l number of the cavity, k ¼ 1; 2 and l ¼ 1; 2
n; m; p summation indices

Superscripts

k; l number of the cavity, k ¼ 1; 2 and l ¼ 1; 2
T transposition operator
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solution to the transformed problem is obtained, the
inverse transform needs to be performed to obtain the solu-
tion in the original time space. Most of these methods solve
the non-transient transformed problem numerically (e.g. by
using a finite element method (e.g. [10,11]) or a boundary
element method (e.g. [12–15])) and perform numerical
inversion of the Laplace (or Fourier) transform.

Another Laplace-transform-based method is presented
in [5], where it was used to solve a problem of transient
flow in media with circular inhomogeneities by means of
the analytic element method. The analytic element method
was originally suggested by Strack [16] for steady flow
problems. A detailed description of the method and a list
of early references can be found in the monograph [17].
Further developments and relevant references can be found
in [18,19]. In this method, the solution of the problem is
taken as a superposition of series of analytical solutions
of the governing differential equation corresponding to
each inhomogeneity. The unknown series coefficients are
found using collocation and least squares techniques such
that boundary conditions are satisfied along given bound-
aries. Applications of the analytic element method to prob-
lems with multiple circular inhomogeneities can be found
in [19,20]. To solve transient flow problems, the analytic
element based method presented in [5] is applied to the
Laplace-transformed problem governed by the modified
Helmholtz equation. A numerical inversion of the Laplace
transform is performed to obtain the solution in the origi-
nal time domain. A solution of the modified Helmholtz
equation in media with multiple circular inhomogeneities
by means of the analytic element method is also studied
in [19].

Our method is also based on the use of the Laplace
transform and the superposition method. For each cavity
the solution is taken as a truncated Fourier–Bessel series
in the local polar coordinate system of that cavity, where
the series coefficients are unknown. The novelty of our
approach is that, due to the use of Fourier series approxi-
mations and Graf’s addition theorem for Bessel functions
[21], most of the derivations involved in the mathematical
basis of the algorithm can be done analytically. The appli-
cation of the addition theorem allows one to analytically
re-expand the basis functions corresponding to one cavity
in terms of an infinite series of basis functions correspond-
ing to the other cavity. After proper truncation of those
series, both sides of the transformed boundary equation
for each cavity can be expressed in terms of truncated series
of basis functions related to this cavity. The unknown ser-
ies coefficients can be found from a linear system of alge-
braic equations. The only error introduced in this process
is due to the truncation of the series expansions.

Finally, inversion of the Laplace transform is performed
using the complex integral inversion formula [6]. The inte-
gration along some part of the integration contour is per-
formed analytically. The integral over the remaining part
of the contour is put in a convenient closed (integral) form
that allows one to study the behavior of the solution as a
smooth function of time and spatial coordinates, e.g. to
obtain accurate solution derivatives. The asymptotic
large-time series for the solution is obtained using the
asymptotic expansion of the analytical solution bT ðx; sÞ in
the Laplace domain and the analytical inversion of the
Laplace transform.

As a result, our method allows us to accurately calculate
the temperature and heat flux anywhere within the mate-
rial, at any time. The use of asymptotic formulae further
reduces the cost of computations.

The method can be extended further to treat problems
involving multiple cavities and inhomogeneities, but this
is outside the scope of the present discussion.

2. Mathematical formulation

Consider an infinite domain containing two non-over-
lapping circular cavities (Fig. 1a). We assume that the
domain is initially at uniform temperature H0 and that its
thermal diffusivity j is constant. We also assume that the
boundary of each cavity is subjected to an instantly-applied
steady temperature that can vary along the boundary. The
temperature H ¼ Hðx; sÞ at point x in the domain, at time
s, is to be determined.

We orient the domain in such a way that the centers of
the cavities are located on a horizontal line. We will refer to
the left cavity as the first cavity, and the other cavity as the
second one. We define Rk as the dimensionless ratio of the
radius of the kth cavity with the boundary Lk ðk ¼ 1; 2Þ to
the distance q between the centers of the cavities. For each
cavity k, we introduce a local polar coordinate system
ðqrk;ukÞ with the origin at the center of the cavity
(Fig. 1b), where rk is the dimensionless ratio of the distance
between point x and the center of the kth cavity to the dis-
tance q, and where the polar angle uk ð�p < uk 6 pÞ is



Fig. 1. Problem geometry (a) and local polar coordinate systems (b).
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positive if measured counterclockwise from the line con-
necting the centers of the cavities as shown in Fig. 1b.

We introduce the dimensionless temperature T ¼ T ðx; tÞ
at point x at dimensionless time t as follows:

T ðx; tÞ ¼ H x;
q2t
j

� �
�H0

� �
� ½H��1; t ¼ js

q2
ð1Þ

where ½H� is the unit of the temperature dimension. The
governing diffusion equation [6] and the associated initial
and boundary conditions are then written in dimensionless
polar coordinates ðrk;ukÞ as follows:

o2T
or2

k

þ 1

rk

oT
ork
þ 1

r2
k

o2T
ou2

k

¼ oT
ot

ð2Þ

T ðx; 0Þ ¼ 0; rk > Rk; k ¼ 1; 2 ð3Þ
T ðx; tÞjLk

¼ UkðukÞ; �p < uk 6 p; t > 0 ð4Þ

where UkðukÞ is a smooth bounded function of uk. We as-
sume that UkðpÞ ¼ Ukð�pÞ, U0kðpÞ ¼ U0kð�pÞ and
U00kðpÞ ¼ U00kð�pÞ, and that UkðukÞ can be expanded in uni-
formly convergent Fourier series in uk as follows:

UkðukÞ ¼
ck

0

2
þ
X1
n¼1

ðck
n cos nuk þ dk

n sin nukÞ ð5Þ

In the following, problem (2)–(4) is solved. We make the
following assumptions concerning the function T ðx; tÞ: (i)
T ðx; tÞ is a 2p-periodic function of uk that has a 2p-periodic
derivative with respect to uk, and (ii) T ðx; tÞ is finite as
rk !1 (regularity condition).

To solve problem (2)–(4), we employ the Laplace trans-
form, defined for a function gðtÞ as [6]

ĝðsÞ ¼
Z 1

0

e�stgðtÞdt ð6Þ

where ĝðsÞ is the Laplace transform of the function gðtÞ,
and s is the transform parameter.

Using the properties of the Laplace transform [6], prob-
lem (2)–(4) is reformulated in the Laplace domain as
follows:

o2bT
or2

k

þ 1

rk

obT
ork
þ 1

r2
k

o2bT
ou2

k

¼ sbT ð7Þ

bT ðx; sÞjLk
¼ 1

s
ck

0

2
þ
X1
n¼1

ðck
n cos nuk þ dk

n sin nukÞ
" #

ð8Þ
where bT ðx; sÞ is the Laplace transform of the function
T ðx; tÞ. Eq. (7) is the modified Helmholtz equation in polar
coordinates ðrk;ukÞ. This equation combines governing dif-
ferential equation (2) and zero initial condition (3). In the
following, we solve Eq. (7) subject to boundary conditions
(8). We assume that bT ðx; sÞ is a 2p-periodic function of uk

that has a 2p-periodic derivative with respect to uk and is
finite as rk !1 (regularity condition). As soon as the
function bT ðx; sÞ is determined, the solution T ðx; tÞ is ob-
tained using the analytical inversion of the Laplace
transform.
3. Solution in the Laplace domain

Solution bT ðx; sÞ to Eq. (7) is sought in the formbT ðx; sÞ ¼ bT 1ðx; sÞ þ bT 2ðx; sÞ ð9Þ

where bT kðx; sÞ is the solution to the problem containing
only the kth cavity ðk ¼ 1; 2Þ with an unknown valuebT kðx; sÞjLk

at the boundary Lk. The unknown valuebT kðx; sÞjLk
should be chosen such that bT ðx; sÞ satisfies the

boundary conditions (8).
The unknown value bT kðx; sÞjLk

may be approximated by
the following truncated Fourier series:

bT kðx; sÞjLk
¼ Y k

0ðsÞ
2
þ
XNk

n¼1

ðY k
nðsÞ cos nuk þ Zk

nðsÞ sin nukÞ

ð10Þ

where the coefficients Y k
nðsÞ; Zk

nðsÞ are unknown functions
of s. The number of terms Nk in the truncated series is arbi-
trary and may be different for each cavity. Based on the
general solution of modified Helmholtz equation (7) in an
infinite medium with a single cavity (for example, see [5]),
the solution bT kðx; sÞ, finite as rk !1, is then written as

bT kðx; sÞ ¼
Y k

0ðsÞ
2

K0ðrkqÞ
K0ðRkqÞ þ

XNk

n¼1

KnðrkqÞ
KnðRkqÞ ðY

k
nðsÞ cos nuk

þ Zk
nðsÞ sin nukÞ ð11Þ

where q ¼ ffiffi
s
p

, and Knð�Þ is the modified Bessel function
[21].

The boundary conditions (8) are rewritten in terms of
truncated Fourier series as ðk; l ¼ 1; 2 and k 6¼ lÞ
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bT kðx; sÞjLk
þ bT lðx; sÞjLk

¼ 1

s
ck

0

2
þ
XNk

n¼1

ðck
n cos nuk þ dk

n sin nukÞ
" #

ð12Þ

where bT lðx; sÞjLk
is the value of the transformed tempera-

ture bT lðx; sÞ along the boundary Lk. The unknown coeffi-
cients Y k

nðsÞ and Zk
nðsÞ should be chosen such that

boundary conditions (12) are satisfied.
The value bT lðx; sÞjLk

of the function bT lðx; sÞ along the
boundary Lk ðk 6¼ lÞ can be re-expanded in a truncated
Fourier series in the polar coordinate system of the kth cav-
ity by using Graf’s addition theorem for Bessel functions
[21], as follows:

bT lðx; sÞjLk
¼ Akl

0 ðsÞ
2
þ
XNk

n¼1

ðAkl
n ðsÞ cos nuk þ Bkl

n ðsÞ sin nukÞ

ð13Þ

For convenience, we introduce ðNk þ 1Þ-dimensional vec-
tors of Fourier coefficients YkðsÞ, AklðsÞ and Nk-dimen-
sional vectors of Fourier coefficients ZkðsÞ, BklðsÞ in the
following template form:

½!Nkþ1�T ¼
� 0

2
; � 1; . . . ; � Nk

� �
; ½!Nk �

T ¼ ð� 1; . . . ; � Nk Þ

ð14Þ
where the superscript T denotes the transposition opera-
tor1, the generic ðNk þ 1Þ-dimensional vector !Nkþ1 denotes
vector YkðsÞ or AklðsÞ with the coefficients � n ¼ Y k

nðsÞ or
� n ¼ Akl

n ðsÞ ðn ¼ 0; . . . ;N kÞ respectively, and the generic
Nk-dimensional vector !Nk denotes vector ZkðsÞ or BklðsÞ
with the coefficients � n ¼ Zk

nðsÞ or � n ¼ Bkl
n ðsÞ

ðn ¼ 1; . . . ;NkÞ, respectively. The coefficients Akl
n ðsÞ and

Bkl
n ðsÞ, involved in expression (13), are found in vector form

as

AklðsÞ ¼ �FklðsÞYlðsÞ; BklðsÞ ¼ �GklðsÞZlðsÞ ð15Þ

where FklðsÞ is a ðNk þ 1Þ � ðNl þ 1Þ-dimensional matrix
and GklðsÞ is a N k � Nl-dimensional matrix, defined in
Appendix A. Note that in expressions (15) and in what fol-
lows, a repeated index does not imply summation.

Using the orthogonal properties of Fourier series, we
can reformulate Eq. (12) in vector form as

YkðsÞ þ AklðsÞ ¼ 1

s
ck; ZkðsÞ þ BklðsÞ ¼ 1

s
dk ð16Þ

where we introduced the ðN k þ 1Þ-dimensional vector of
Fourier coefficients ck and the N k-dimensional vector of
Fourier coefficients dk of the form (14) with !Nkþ1 ¼ ck

and � n ¼ ck
n ðn ¼ 0; . . . ;NkÞ, and !Nk ¼ dk and � n ¼ dk

n

ðn ¼ 1; . . . ;NkÞ, respectively.
1 Not to be confused with the temperature T ðx; tÞ.
With the use of expressions (15), Eqs. (16) yield

YkðsÞ � FklðsÞYlðsÞ ¼ 1

s
ck; ZkðsÞ �GklðsÞZlðsÞ ¼ 1

s
dk

ð17Þ

A combination of Eqs. (17) for k ¼ 1; 2 allows one to sep-
arate vectors YkðsÞ and YlðsÞ, or vectors ZkðsÞ and ZlðsÞ,
and formulate the following equations for the unknown
vectors YkðsÞ and ZkðsÞ:

UkðsÞYkðsÞ ¼ 1

s
ukðsÞ; VkðsÞZkðsÞ ¼ 1

s
vkðsÞ ð18Þ

where the matrices UkðsÞ, VkðsÞ and vectors ukðsÞ, vkðsÞ are
given by

UkðsÞ ¼ INkþ1 � FklðsÞFlkðsÞ; ukðsÞ ¼ ck þ FklðsÞcl ð19Þ
VkðsÞ ¼ INk �GklðsÞGlkðsÞ; vkðsÞ ¼ dk þGklðsÞdl ð20Þ

and IN is the ðN � NÞ-dimensional identity matrix.
Eqs. (18) represent temporal systems of Nk þ 1 and Nk

linear equations ðk ¼ 1; 2Þ. Formally, vectors YkðsÞ and
ZkðsÞ can be expressed as

YkðsÞ ¼ 1

s
½UkðsÞ��1

ukðsÞ; ZkðsÞ ¼ 1

s
½VkðsÞ��1

vkðsÞ ð21Þ

Substituting solutions (21) for the unknown Fourier coeffi-
cients into expression (11), the transformed temperaturebT kðx; sÞ is obtained in the formbT kðx; sÞ ¼ ½akðx; sÞ�TYkðsÞ þ ½bkðx; sÞ�TZkðsÞ ð22Þ

where the vectors akðx; sÞ and bkðx; sÞ are given by

akðx; sÞ ¼

K0ðrk qÞ
K0ðRk qÞ

K1ðrk qÞ
K1ðRk qÞ cosðukÞ

� � �
KNk ðrkqÞ
KNk ðRkqÞ cosðN kukÞ

0BBBBB@

1CCCCCA;

bkðx; sÞ ¼

K1ðrk qÞ
K1ðRk qÞ sinðukÞ

� � �
KNk ðrkqÞ
KNk ðRkqÞ sinðNkukÞ

0BB@
1CCA ð23Þ

The final solution bT ðx; sÞ is the following:

bT ðx; sÞ ¼ 1

s

X2

k¼1

f½akðx; sÞ�T½UkðsÞ��1
ukðsÞ

þ ½bkðx; sÞ�T½VkðsÞ��1
vkðsÞg ð24Þ
4. Solution in the time domain

To obtain the temperature T ðx; tÞ in the time domain, we
apply the following complex inversion formula [6]:

T ðx; tÞ ¼ 1

2pi

Z rþi1

r�i1
est bT ðx; sÞds ð25Þ

where a real number r should be chosen such that all sin-
gularities of the function bT ðx; sÞ are located to the left of
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the vertical line ReðsÞ ¼ r. We change the contour of
integration in formula (25) as done in [6] for similar
problems (Sections 12.3 and 13.5). The new integration
contour includes two semi-infinite lines parameterized as
s ¼ u2e�ip; u 2 ð0;1Þ (with opposite directions of travel)
and a vanishingly small circle centered at s ¼ 0 (with a
counter-clockwise direction of integration). The solution
T ðx; tÞ is then obtained as

T ðx; tÞ ¼ T sðxÞ �
2

p

Z 1

0

ue�u2tIm½bT ðx; u2eipÞ�du ð26Þ

where the term T sðxÞ is defined in Appendix C, and the
symbol Im[ ] denotes the imaginary part of a complex num-
ber. As seen from Eq. (26), the computation of the temper-
ature T ðx; tÞ involves the computation of the transformed
solution bT ðx; sÞ at points s ¼ u2eip, for u 2 ð0;1Þ.

The term T sðxÞ involved in Eq. (26) represents a semi-
analytical solution for the steady-state temperature,

T sðxÞ ¼ lim
t!1

T ðx; tÞ ð27Þ

which is the solution of the Laplace’s equation correspond-
ing to the steady-state heat conduction problem. An ana-
lytical solution to this problem was obtained in [6] using
bipolar coordinates. For various cases of boundary condi-
tions UkðukÞ, we have tested that our semi-analytical stea-
dy-state solution T sðxÞ converges to the analytical
solution as N 1;N 2 !1.

The normal flux at the boundary of the kth cavity can
be found using the transformed solution bT ðx; sÞ. The
Laplace transform of the boundary flux can be found
by differentiating the transformed temperature bT ðx; sÞ
with respect to rk and setting rk ¼ Rk. Using expressions
(23) and (24), such derivatives are easy to obtain. After
that, an inverse Laplace transform may be applied to
the transformed flux in the same way as it is done in
Eqs. (25) and (26). The final expression for the dimension-
less normal flux is obtained as

� oT ðx; tÞ
ork

� �
Lk

¼H kðukÞþ
2

p

Z 1

0

ue�u2tIm
obT ðx;u2eipÞ

ork

" #
Lk

24 35du

ð28Þ

where the first term HkðukÞ ¼ �½oT sðxÞ
ork
�Lk

, which represents
the boundary flux corresponding to the steady-state tem-
perature T sðxÞ, is given in Appendix C.

Expressions (26) and (28) may be further simplified by
substituting the expression for the function bT ðx; u2eipÞ
and its derivatives. After a rearrangement of terms, we find
that these expressions represent sums of the truncated Fou-
rier series in angles uk ðk ¼ 1; 2Þ with time-dependent coef-
ficients. It can be shown that for fixed numbers
Nk ðk ¼ 1; 2Þ, the infinite integrals involved in formulae
(26) and (28) converge. Preliminary analysis and numerical
results for smooth boundary conditions show that solu-
tions (26) and (28) converge as Nk !1.
5. Large-time asymptotic series

To derive a large-time asymptotic formula for the tem-
perature, we use the technique described by Carslaw and
Jaeger [6]. It can be shown that the large-time asymptotic
formula for the solution T ðx; tÞ may be derived from the
series expansion of the solution bT ðx; sÞ in the Laplace
domain as the transform parameter s tends to zero. Such
a series for the solution bT ðx; sÞ is presented below. It
involves only elementary functions of s, which makes it
possible to perform an analytical inversion of the Laplace
transform. As a result, the large-time asymptotic formula
for the solution T ðx; tÞ is obtained in a closed form.
5.1. Series for the solution in the Laplace domain ðs! 0Þ

It is found that the series for the transformed solutionbT ðx; sÞ has the following form:

bT ðx; sÞ ¼ T sðxÞ
s
þ
XM0

m¼1

A0mðxÞ
sðln sÞm þ

XM1

m¼�2

A1mðxÞ
ðln sÞm þ Rðs;M0;M1Þ

ð29Þ

where T sðxÞ is the steady-state solution (see Section 4);
coefficients ApmðxÞ ðp ¼ 0; 1Þ are listed in Appendix B.4;
the numbers of terms M0 and M1 in the summations are
discussed below, and the remainder Rðs;M0;M1Þ is of the
order

Rðs;M0;M1Þ ¼ O
1

sðln sÞM0þ1

 !
þO

1

ðln sÞM1þ1

 !
þOðsln3sÞ

ð30Þ

The derivation of series (29) is based on the series expan-
sions of the vectors and inverse matrices involved in expres-
sion (24) as s! 0. The components of the vectors involve
combinations of modified Bessel functions for which such
expansions are available [21]. For example, series for the
vectors akðx; sÞ and bkðx; sÞ have the following form:

akðx; sÞ ¼
X1

p¼0

XMp

m¼�p

sp

ðln sÞm ak
pmðxÞ þ R1ðs;M0;M1Þ ð31Þ

bkðx; sÞ ¼ bk
00ðxÞ þ sbk

10ðxÞ þ s ln sbk
1;�1ðxÞ þOðs2ln2sÞ ð32Þ

where the vector coefficients ak
pmðxÞ and bk

pmðxÞ are listed in
Appendix B.1, and the remainder R1ðs;M0;M1Þ is of the
order

R1ðs;M0;M1Þ ¼ O
1

ðln sÞM0þ1

 !
þO

s

ðln sÞM1þ1

 !
þOðs2ln2sÞ

ð33Þ

Series for the vectors ukðsÞ and vkðsÞ, obtained similarly as
(31) and (32), are given in Appendix B.2.

It is more difficult to obtain series for the inverse matri-
ces ½UkðsÞ��1 and ½VkðsÞ��1 involved in expression (24), inas-
much as there is no simple formula for the inverse of a
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matrix of arbitrary dimensions. An additional difficulty
arises because of the non-invertibility of the matrix UkðsÞ
at s ¼ 0. To obtain series for the inverse matrices, the fol-
lowing procedure was adopted.

First, the analysis was performed for the matrices of
small dimensions for which it was possible to derive the
expansions explicitly (for 2� 2 matrices) or obtain the
expansions using the symbolic computations software
Mathematica (for N � N matrices with N ¼ 3; 4; 5Þ. In each
case, the expansions of the inverse matrices had the follow-
ing form

½UkðsÞ��1 ¼
X1

p¼0

XMp

m¼�p�1

sp

ðln sÞm
eUk

pm þ R5ðs;M0;M1Þ ð34Þ

½VkðsÞ��1 ¼ eVk
00 þ seVk

10 þ s ln seVk
1;�1 þOðs2ln2sÞ ð35Þ

where the remainder R5ðs;M0;M1Þ is of the order given by
expression (33); the first term in series (34) is a singular log-
arithmic term ðln s eUk

0;�1Þ, and the first term in series (35) is
a scalar matrix eVk

00 ¼ ½Vkð0Þ��1 (matrix Vkð0Þ is invertible).
Based on the analysis of the corresponding expansions

of the direct matrices UkðsÞ and VkðsÞ, we made the
assumption that the expansions of the inverse matrices
½UkðsÞ��1 and ½VkðsÞ��1 of arbitrary dimensions have the
form (34) and (35).

To find the unknown matrix coefficients eUk
pm and eVk

pm

involved in expansions (34) and (35), we consider the
matrix equations

UkðsÞ½UkðsÞ��1 ¼ INkþ1; VkðsÞ½VkðsÞ��1 ¼ INk ð36Þ
We expand the matrices UkðsÞ and VkðsÞ using the expan-
sions of the involved Bessel functions, as follows:

UkðsÞ ¼
X1

p¼0

XMp

m¼�p

sp

ðln sÞm Uk
pm þ R2ðs;M0;M1Þ ð37Þ

VkðsÞ ¼ Vk
00 þ sVk

10 þ s ln sVk
1;�1 þOðs2ln2sÞ ð38Þ

where the matrix coefficients Uk
pm and Vk

pm are discussed in
Appendix B.3, and the remainder R2ðs;M0;M1Þ is of the or-
der given by expression (33). With the use of expansions
(34), (35), (37) and (38), Eqs. (36) yield

ln sðUk
00
eUk

0;�1Þ þ ðU
k
00
eUk

00 þUk
01
eUk

0;�1Þ

þ 1

ln s
ðUk

00
eUk

01 þ � � �Þ þ . . . ¼ INkþ1 ð39Þ

Vk
00
eVk

00 þ sðVk
00
eVk

10 þ Vk
10
eVk

00Þ þ s ln sðVk
00
eVk

1;�1

þ Vk
1;�1
eVk

00Þ þ � � � ¼ INk ð40Þ

where the terms of the same orders in s are collected
together.

Since the right-hand sides of Eqs. (39) and (40) are s-
independent, all s-dependent terms in the left-hand sides
of these equations must be zero, and the s-independent
terms in the left-hand sides must be equal to the identity
matrices from the right-hand sides. These conditions lead
to linear equations for the unknown matrices eUk

pm and eVk
pm.
Although Eqs. (39) and (40) look similar, there is a
major difference in the solution of these equations. The
solution of Eq. (40) for the matrices eVk

pm is straightforward
since the matrix Vk

00 ¼ Vkð0Þ is invertible (see Appendix
B.3). The solution of Eq. (39) for the matrices eUk

pm is more
complicated since the matrix Uk

00 ¼ Ukð0Þ is non-invertible.
To solve Eq. (39), one needs to deal with the problem of an
underdetermined linear system of equations, which can be
resolved using the annihilation principle [22].

For example, the first matrix equation deduced from Eq.
(39) is the following:

Uk
00
eUk

0;�1 ¼ 0 ð41Þ

where we put the null matrix 0 in the right-hand side. The
linear system corresponding to Eq. (41) is underdetermined,
in the sense that the number of the linearly independent
equations is less than the number of the unknowns (compo-
nents of the matrix eUk

0;�1). To complete this system, addi-
tional conditions must be imposed on the unknown
matrix eUk

0;�1.
The missing equations can be derived from the second

matrix equation

Uk
00
eUk

00 þUk
01
eUk

0;�1 ¼ INkþ1 ð42Þ

which is deduced from the second term in the left-hand side
expansion in Eq. (39). Eq. (42) involves the term Uk

00
eUk

00

where the matrix eUk
00 is unknown too. To eliminate this

term, the ðNk þ 1Þ-dimensional annihilating vector nk is
introduced, such that it satisfies the underdetermined linear
system ½nk�TUk

00 ¼ 0. For convenience, we choose nk such
that its first component is equal to 1. Operating with the
transposed vector ½nk�T on both sides of Eq. (42), we elim-
inate the term Uk

00
eUk

00 and obtain the corresponding
equation

½nk�TUk
01
eUk

0;�1 ¼ ½nk�T ð43Þ

Eq. (43) contains the missing equations for the matrixeUk
0;�1. As a result, this matrix can be found as a solution

to the linear system composed of linearly independent
equations from the systems (41) and (43).

The same routine is used to find the rest of the matriceseUk
pm. For each matrix, we impose two simultaneous matrix

equations, deduced from the consecutive terms in the left-
hand side expansion in Eq. (39). One of the matrix equa-
tions represents an underdetermined linear system, and
the other matrix equation is used to retrieve the missing
equations. The annihilating vector is used to eliminate
additional unknowns involved in the latter matrix equa-
tion. The final linear system is composed of linearly inde-
pendent equations, retrieved from the two simultaneous
matrix equations. More details on the use of the annihila-
tion principle can be found in the work of Kruskal [22].
The resulting equations for the matrices eUk

pm are listed in
Appendix B.3.

To verify the validity of expansions (34) and (35), we
compared the inverse matrices obtained using numerical
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inversion procedures with the matrices obtained using ser-
ies (34) and (35), for various values of the involved param-
eters. A good agreement of the results was obtained in each
case. This allows us to suggest that series (34) and (35) can
be used for arbitrary numbers Nk.

Finally, the expansions obtained for the vectors and
matrices are substituted into formula (24) for the trans-
formed solution bT ðx; sÞ. Series (29) is obtained by multiply-
ing the substituted expansions and collecting together the
terms of the same orders in s.

5.2. Series for the solution in the time domain

The asymptotic series for the temperature T ðx; tÞ is
obtained by applying the inverse Laplace transform to ser-
ies (29) and integrating the series term by term. The inte-
gration of series (29) is performed with the help of
integral formulae presented in [6] (p. 340) and asymptotic
formulae for some of the involved integrals given in [23].
As the result, the asymptotic series for the temperature
T ðx; tÞ for large t is obtained in the form

T ðx; tÞ ¼ T sðxÞ þ
XM0

m¼1

K0mðxÞ
ðln tÞm þ

1

t

XM1

m¼�1

K1mðxÞ
ðln tÞm þ �ðt;M0;M1Þ

ð44Þ
where the coefficients KpmðxÞ ðp ¼ 0; 1Þ are listed in Appen-
dix D, and the remainder �ðt;M0;M1Þ is of the order

�ðt;M0;M1Þ ¼ O
1

ðln tÞM0þ1

 !
þO

1

tðln tÞM1þ1

 !
þO

ln2t
t2

� �
ð45Þ

The numbers M0, M1 should be chosen for each specific t

such that all three terms in remainder (45) are of approxi-
mately same order. In the numerical examples presented in
this paper, we used M0 ¼ 6, M1 ¼ 2. With these values of
M0 and M1, each term in expression (45) does not exceed
10�6 for t P 104.

In addition to providing an approximation for the tem-
perature T ðx; tÞ for large values of t, series (44) can be used
to estimate the rate of convergence of T ðx; tÞ to its limiting
steady-state value T sðxÞ as t!1. For example, the first
term in the summation in expression (44) gives the follow-
ing estimate:

T ðx; tÞ � T sðxÞ �
K01ðxÞ

ln t
; t!1 ð46Þ

which states that the difference T ðx; tÞ � T sðxÞ is of the or-
der ðln tÞ�1. It can be shown that if prescribed boundary
conditions are skew-symmetric with respect to the line con-
necting the centers of the cavities (the case when for each k

the prescribed boundary temperature UkðukÞ is an odd
function of polar angle uk and its Fourier coefficients ck

n

are zero for all n), then the coefficients K0mðxÞ ðm P 1Þ
and K1;�1ðxÞ in series (44) are zero, and the difference
T ðx; tÞ � T sðxÞ is of the order t�1.
The asymptotic series for the heat flux at the boundary
Lk can be obtained by differentiating series (29) with respect
to rk, setting rk ¼ Rk, and then applying the inverse Laplace
transform, similarly as done to obtain series (44).
6. Numerical implementation

The numerical computation of the temperature T ðx; tÞ
consists of two parts: (1) determination of the numbers
Nk ðk ¼ 1; 2Þ needed to achieve a specified accuracy level,
and (2) computation of the temperature T ðx; tÞ at specified
points x ¼ x1; . . . ; xm, at non-zero time instants
t ¼ t1; . . . ; tn. Details of these steps are described below.
6.1. Determination of the numbers of terms in the Fourier

series

The numbers Nk should be chosen such that the temper-
ature T ðx; tÞ will satisfy boundary conditions (4) up to a
predefined accuracy level e, that is

max
�p<uk6p

jT ðx; tÞjLk
� UkðukÞj < e; k ¼ 1; 2 ð47Þ

The boundary error jT ðx; tÞjLk
� UkðukÞ j may be estimated

as follows:

jT ðx; tÞjLk
� UkðukÞj 6 jT ðx; tÞ � T sðxÞjLk

þ jT sðxÞjLk
� UkðukÞj

ð48Þ

where the second term jT sðxÞjLk
� UkðukÞj is t-independent

and represents the boundary error in the steady-state solu-
tion T sðxÞ. In numerical examples, it has been seen that the
leading term in expression (48) is the steady-state term
jT sðxÞjLk

� UkðukÞj, and that the numerical value of expres-
sion (47) does not change much with the increase in time t.

Based on these considerations, the numbers N k are first
chosen such that the steady-state boundary error
jT sðxÞjLk

� UkðukÞj does not exceed the accuracy limit e
for each k. This is done using an iterative algorithm, where
the numbers N k are increasing until the maximum of the
error jT sðxÞjLk

� UkðukÞj, computed at a number (say,
360) of equally spaced points x along the boundaries Lk,
is less than e. (If the problem is symmetric with respect to
the line connecting the centers of the cavities (which is
the case when dk ¼ 0; k ¼ 1; 2Þ, boundary points may be
equally spaced along only one symmetric part of each
boundary Lk.)

After that, the numbers N k are adjusted such that the
error of the transient solution jT ðx; t1Þ � UkðukÞj at the
minimum specified time instant t ¼ t1 does not exceed the
accuracy limit e for each k. The numbers Nk are iteratively
increased until the maximum of the error jT ðx; t1Þ�
UkðukÞj, computed at equally spaced points x along the
boundaries Lk, is less than e.

In numerical tests run to date, the numbers Nk com-
puted using the steady-state boundary error jT sðxÞjLk

�
UkðukÞj in almost all cases guaranteed that the boundary
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error of the transient solution jT ðx; t1Þ � UkðukÞj for differ-
ent values of t1 is less than e.
6.2. Computation of the solution

As soon as the numbers Nk are chosen, temperature
T ðx; tÞ can be computed at points x ¼ x1; . . . ; xm, at times
t ¼ t1; . . . ; tn. We discuss below the computation of the tem-
perature for small and intermediate values of t. For large
values of t, asymptotic series (44) is used. The range of
validity of the asymptotic series is discussed in Section 7.

The steady-state solution T sðxÞ at points x ¼ x1; . . . ; xm is
computed according to the formula given in Appendix C.
The computation of the transient term in temperature
T ðx; tÞ involves the integration over an infinite interval
(see Eq. (26)), where the computation of the integrand
function involves matrix inversions (see Eq. (24)).

The integrand function in Eq. (26), corresponding to
points x ¼ x1; . . . ; xm and times t ¼ t1; . . . ; tn, may be repre-
sented as a matrix-function f ðuÞ with a matrix ðm; nÞ-ele-
ment fmnðuÞ as follows:

fmnðuÞ ¼ ue�u2tn Im½bT ðxm; sÞ�s¼u2eip ð49Þ

To evaluate the term bT ðxm; sÞ involved in expression (49),
we use expression (24). The inverse matrices ½UkðsÞ��1 and
½VkðsÞ��1 involved in expression (24) can be computed just
once for each value of the integration variable u ðs ¼ u2eipÞ.
The integration of the matrix-function f ðuÞ may be then
performed row by row, or column by column, using avail-
able quadratures for the integrals of the vector-functions.
In the numerical examples presented in this paper, the solu-
tion was computed separately for each time instant tn by
integrating the corresponding columns of the matrix f ðuÞ.

The integral of the function f ðuÞ over the infinite
interval can be split into two integrals:Z 1

0

f ðuÞdu ¼
Z d

0

f ðuÞduþ
Z 1

d
f ðuÞdu ð50Þ

where 0 < d <1. The integration over the interval ð0; dÞ is
performed using the expansion of the integrand function
f ðuÞ in series in u in the vicinity of u ¼ 0. Such an expan-
sion is obtained using expansion (29) of the transformed
temperature bT ðx; sÞ. The typical terms that appear in the
series for f ðuÞ involve combinations of positive and nega-
tive powers of u and ln u, which makes it possible to per-
form the integration over the interval ð0; dÞ analytically
or using simple quadrature rules. As a result, no matrix
inversion is needed for integration over the interval ð0; dÞ.
The choice of an appropriate value of d is based on the
analysis of the error introduced by approximating the func-
tion f ðuÞ using the series expansion. In the numerical
examples presented below (see Section 7), d is chosen as
d ¼ 10�5t�1=2 if t P 1 and d ¼ 10�5 if t < 1.

The integration over the interval ðd;1Þ is performed
numerically using a change of the integration variable to
transform the infinite integration interval into a finite
one. This kind of transformation is automatically exploited
in available routines created for the numerical computation
of integrals over infinite intervals (see, for example, [24]).
The inverse matrices involved in the integrand function
f ðuÞ can be computed using standard linear solvers.

To reduce the computational cost of matrix inversions,
we adopted an iterative procedure based on an alternating
algorithm [25]. In this algorithm, the unknown boundary
value bT kðx; sÞjLk

and the unknown vectors of its Fourier
coefficients YkðsÞ and ZkðsÞ (Eq. (11)) are adjusted itera-
tively to account for the cavities interactions. As a result,
the inverse matrices ½UkðsÞ��1 and ½VkðsÞ��1 are approxi-
mated by the following Neumann series

Uk;MðsÞ ¼ INkþ1 þ
XM�1

m¼1

ðFklðsÞFlkðsÞÞm ð51Þ

Vk;MðsÞ ¼ IN k þ
XM�1

m¼1

ðGklðsÞGlkðsÞÞm ð52Þ

where M is the number of steps in the alternating algo-
rithm. The choice of the number M for a specific time t

at which T ðx; tÞ is computed is performed iteratively to
guarantee a sufficiently accurate approximation of the
boundary temperature UkðukÞ by the transient solution
T ðx; tÞ. The algorithm is similar to the one described in Sec-
tion 6.1. It has been observed in numerical tests that M in-
creases with an increase in t, and it may increase with an
increase in numbers N k ðk ¼ 1; 2Þ. Preliminary analytical
and numerical results have shown that the solution T ðx; tÞ
obtained using the alternating algorithm converges to the
solution obtained using standard linear solvers, but a strict
mathematical proof of convergence is lacking.
7. Numerical examples

In this section we consider two examples correspond-
ing to uniform and non-uniform boundary temperature.
In both examples, zero dimensionless temperature
T ðx; tÞjL2

¼ 0 is prescribed at the boundary L2. For simplic-
ity, the numbers of terms in the Fourier series Nk ðk ¼ 1; 2Þ
were chosen equal, i.e. N 1 ¼ N 2.
7.1. Uniform boundary temperature

Unit dimensionless temperature T ðx; tÞjL1
¼ 1 is pre-

scribed at the boundary L1. The problem is solved for the
cases when R1 ¼ 0:2; 0:3; 0:5; 0:6 and R2 ¼ 0:3. In Table
1 we present our results for the dimensionless temperature
T ðx; tÞ and the steady-state temperature T sðxÞ calculated at
two points, point A and point B, defined as A ¼ ð1:5q; pÞ,
B ¼ ð2:5q; 0Þ in polar coordinates ðqr1;u1Þ and as
A ¼ ð2:5q; pÞ, B ¼ ð1:5q; 0Þ in polar coordinates ðqr2;u2Þ
(see Fig. 2). The temperature T ðx; tÞ was computed at times
t ¼ 1; 10; 100.

The predetermined accuracy level e and the numbers N 1

and M (M is the number of steps in the alternating



Table 1
Temperature T ðx; tÞ and steady-state temperature T sðxÞ at points A and B

in Fig. 2

e R1 N1 t ¼ 1 t ¼ 10 t ¼ 100 T sðxÞ

10�6 0.2 9 M ¼ 10 M ¼ 15 M ¼ 19 –
A 0.15440 0.34789 0.43136 0.60023
B 0.00606 0.06030 0.11658 0.27223

10�6 0.3 10 M ¼ 20 M ¼ 20 M ¼ 22 –
A 0.20006 0.41523 0.50605 0.68454
B 0.00847 0.07453 0.14011 0.31546

10�6 0.5 20 M ¼ 20 M ¼ 23 M ¼ 38 –
A 0.29869 0.53339 0.62918 0.80787
B 0.01528 0.10614 0.18788 0.39175

10�5 0.6 28 M ¼ 20 M ¼ 33 M ¼ 46 –
A 0.35287 0.58714 0.68154 0.85353
B 0.02031 0.12508 0.21427 0.42868

Fig. 2. Location of points A and B.
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algorithm, see Section 6.2) used to achieve the solution
according to this accuracy level are reported in the table.
In most computations performed for these examples we
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Fig. 3. The distribution of the dimensionless temperature T ðx; tÞ at point B (
uniform (b) prescribed temperature T ðx; tÞjL1

.

adopted the predetermined accuracy level e ¼ 10�6. For
the case when the boundaries of the cavities were close to
each other, we had to relax the conditions on the predeter-
mined accuracy level and took it to be e ¼ 10�5 for the case
R1 ¼ 0:6.

The values of the temperature T ðx; tÞ presented in the
table coincided with the values obtained using the finite ele-
ment method to within 4 or 5 significant digits. The finite
element method results were obtained using the commer-
cial software COMSOL Multiphysics (formerly known as
FEMLAB). The values of the steady-state temperature
T sðxÞ coincided with the analytical solution given in [6] to
6 or more significant digits.
R
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For the same geometry, the temperature T ðx; tÞ was
computed for large values of time. A comparison of the
results obtained using the asymptotic formula (44) with
the results obtained using the integral solution (26) is given
in Fig. 3a, which shows the distribution of the dimension-
less temperature T ðx; tÞ at point B, for times 102

6 t 6 105.
The continuous curves on the plots show the temperature
computed using the asymptotic formula (44). The dots on
the plots show the temperature computed using solution
(26). It is seen that the results obtained with the asymptotic
series are in a good agreement with the results obtained
using solution (26). In all the cases, the relative error
(defined as the absolute value of the ratio of the difference
between the asymptotic and the integral solutions to the
value of the integral solution) did not exceed 0.6% and
decreased with the increase in time.
r
2

Fig. 4. The distribution of the dimensionless temperature T ðx; tÞ and the
steady-state temperature T sðxÞ along the horizontal line connecting the
boundary L2 and point B (see Fig. 2). The numbers at the right end of the
curves correspond to the moments of dimensionless time
t ¼ 1; 5; 10; 102; . . . ; 108.
7.2. Non-uniform boundary temperature

This example is designed to study the influence of the
boundary conditions. The temperature at the boundary
L1 is prescribed as T ðx; tÞjL1

¼ cos u1. We solve this prob-
lem for the same values of the parameters involved in the
formulation in the previous example. The results are
reported in Table 2. As in the previous example, we had
to relax the conditions on the predetermined accuracy level
for the case R1 ¼ 0:6. A comparison of the results for the
temperature at point B at times 102

6 t 6 105, obtained
using the asymptotic formula (44), with the results
obtained using the integral solution (26) is given in
Fig. 3b. The relative error at point B decreased with the
increase in time as well, even though it was higher than
in the previous example. The relative error at point B

was at most 30.5% (for the case R1 ¼ 0:6Þ at time t ¼ 102,
5% at t ¼ 103, and 0.2% at t ¼ 104.

A comparison of the results obtained using our method
with the results obtained using the finite element method
and the analytical steady-state solution [6] is given in
Fig. 4 (for the case R1 ¼ 0:6Þ. Fig. 4 shows the distribution
Table 2
Temperature T ðx; tÞ and steady-state temperature T sðxÞ at points A and B

in Fig. 2

e R1 N1 t ¼ 1 t ¼ 10 t ¼ 100 T sðxÞ

10�6 0.2 10 M ¼ 10 M ¼ 15 M ¼ 19 –
A �0.08039 �0.14587 �0.16861 �0.20979
B 0.00177 �0.00049 �0.01170 �0.04908

10�6 0.3 11 M ¼ 20 M ¼ 20 M ¼ 22 –
A �0.12365 �0.21051 �0.23908 �0.28832
B 0.00298 0.00183 �0.01228 �0.05972

10�6 0.5 20 M ¼ 20 M ¼ 23 M ¼ 38 –
A �0.22131 �0.33428 �0.36755 �0.41880
B 0.00683 0.01293 �0.00278 �0.05944

10�5 0.6 28 M ¼ 20 M ¼ 33 M ¼ 46 –
A �0.27677 �0.39575 �0.42881 �0.47642
B 0.01005 0.02282 0.00826 �0.04870
of the dimensionless temperature T ðx; tÞ for times in the
range t ¼ 1; . . . ; 108 and the steady-state temperature
T sðxÞ along the horizontal line connecting the boundary
L2 and point B. The temperature is given as a function of
the ratio r2, where r2 ¼ 0:3 corresponds to the point located
on the boundary L2, and r2 ¼ 1:5 corresponds to the point
B. Zero initial temperature is shown as well.

The finite element method results were obtained using
the software COMSOL Multiphysics. Our results were
obtained using solution (26) (for times t ¼ 1; . . . ; 103Þ and
asymptotic series (44) (for times t P 104Þ. For large values
of t, the computational time was several seconds using the
asymptotic series as opposed to several minutes using the
finite element method.

As can be seen from Fig. 4, at small times the tempera-
ture at points between the boundary L2 and point B
increases to positive values. At some moment ðt � 5Þ the
temperature reaches its positive maximum and starts to
decrease. Finally, it converges to the negative steady state
temperature. One can see that it may take as long as
t ¼ 108 for the temperature to reach the steady state. In
such cases, it is beneficial to use asymptotic formula (44)
to get accurate values of the temperature and to estimate
the time at which the temperature is close to its steady-state
value.
8. Discussion and conclusions

This paper presents a semi-analytical solution for the
transient heat conduction problem of an infinite medium
containing two circular cavities. The problem is first solved
in the Laplace transform domain using truncated Fourier
series approximations of the boundary unknowns and the
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addition theorem for the solutions of the governing differ-
ential equation. By imposing the boundary condition pre-
scribed for the transformed temperature at the boundary
of each cavity and using orthogonality properties of Fou-
rier series, a linear system of equations for the unknown
Fourier coefficients is derived. An iterative solution for
the linear system is suggested. Application of the analytical
inverse Laplace transform results in an integral form of the
solution. The asymptotic formula for the solution is
obtained using the transformed solution. The asymptotic
formula is first obtained in the Laplace transform domain,
where it has the form of series involving elementary func-
tions of the transform parameter. An analytical inversion
of the Laplace transform is then performed to obtain the
asymptotic series for the temperature in the time domain.

The method is capable of accurately computing the tem-
perature and heat flux at any point and any time, without
the need to consider a series of discrete time steps, as in
conventional numerical procedures. The advantage of the
method as opposed to conventional numerical procedures
becomes evident when the solution is computed for large
values of time.

Several examples are given to demonstrate the validity
of the obtained asymptotic formulae. Numerical results
show a good agreement of the asymptotic and the integral
solutions, as well as a good agreement of our solution and
a solution obtained using the finite element method. The
convergence of the asymptotic solution to the semi-analyt-
ical solution and to the solution obtained using the finite
element method has been observed for various values of
the parameters involved in the problem. Further analysis
should be performed to estimate the error in the solution
due to the truncation of Fourier series and to study the
convergence of the iterative solution procedure.

The method allows for a direct extension for the prob-
lems of multiple cavities and inhomogeneities under vari-
ous types of linear boundary conditions. Derivation of
the solution for these problems follows the main steps of
the analysis presented in this paper. However, the case of
multiple circular cavities or inhomogeneities will require a
significantly more work. As has been shown in the present
work, the derivation of the asymptotic solution for the two
circular cavities is based on the asymptotic expansions of
the singular matrices involved in the problem. Such expan-
sions have been attentively studied using analytical and
numerical tools. For the case of multiple circular features,
due to the larger dimension of the problem, an accurate
asymptotic study of the corresponding singular matrices
will not be a simple task. For this reason, the case of two
cavities presented here is believed to be of particular impor-
tance for further developments.
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Appendix A. Matrices FklðsÞ and GklðsÞ

In what follows (including Appendix B), the indices k, l

are reserved to indicate the number of the corresponding
cavity. The only possible values of these indices are
k; l ¼ 1; 2 and k 6¼ l. The vectors are given by their ith ele-
ments ði P 1Þ, e.g. ak

00ðxÞðiÞ denotes the ith element of the
vector ak

00ðxÞ. The matrices are given by their ði; jÞ-elements
ði; j P 1Þ; e.g. FklðsÞði; jÞ denotes the ði; jÞ element of the
matrix FklðsÞ.

Matrices FklðsÞ and GklðsÞ are given by

FklðsÞði; jÞ ¼ ð�1Þkði�1Þþlðj�1Þþ1giðKiþj�2ðqÞ

þ Ki�jðqÞÞ
I i�1ðRkqÞ
Kj�1ðRlqÞ

ð53Þ

GklðsÞði; jÞ ¼ ð�1ÞkiþljðKiþjðqÞ � Ki�jðqÞÞ
I iðRkqÞ
KjðRlqÞ

ð54Þ

where I ið�Þ and Kið�Þ are the modified Bessel functions [21];
and gi ¼ 0:5 if i ¼ 1 and gi ¼ 1 if i 6¼ 1.

Appendix B. Coefficients of the series in the Laplace domain

Below, symbols
m
n

� �
denote the binomial coefficients

m
n

� �
¼ m!

n!ðm�nÞ!. Constants ak, ak, bk ðk ¼ 1; 2Þ and b are

defined as ak ¼ rk=Rk and

ak ¼ � ln
r2

k

4

� �
� 2c; bk ¼ � ln

R2
k

4

� �
� 2c;

b ¼ � ln
1

4

� �
� 2c ð55Þ

where c ¼ 0:5772 . . . is Euler’s constant.

B.1. Series for the vectors akðx; sÞ and bkðx; sÞ

The ðN k þ 1Þ-dimensional vectors ak
pmðxÞ and the

Nk-dimensional vectors bk
pmðxÞ are given by

ak
00ðxÞðiÞ ¼ ðakÞ1�i cosðði� 1ÞukÞ ð56Þ

ak
0mðxÞðiÞ ¼ 2 lnðakÞbm�1

k d1i; m P 1 ð57Þ
ak

1;�1ðxÞðiÞ ¼ R2
kð4akÞ�1ða2

k � 1Þ cosðukÞd2i ð58Þ

ak
10ðxÞðiÞ ¼

R2
k cosðði� 1ÞukÞ

4ðakÞi�1

�
1þ bk � a2

kð1þ akÞ i ¼ 2
1

i�2
ð1� a2

kÞ i 6¼ 2

(
ð59Þ

ak
1mðxÞðiÞ ¼ 2�1R2

kb
m�2
k a2

kbkðln ak � 1Þ
�

þ2m ln ak þ ak � bk ln ak�d1i ð60Þ
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where m P 1 in Eq. (60).

bk
00ðxÞðiÞ ¼ ðakÞ�i sinðiukÞ ð61Þ

bk
10ðxÞðiÞ ¼

R2
k sinðiukÞ
4ðakÞi

�
1þ bk � a2

kð1þ akÞ i ¼ 1
1

i�1
ð1� a2

kÞ i P 2

(
ð62Þ

bk
1;�1ðxÞðiÞ ¼ R2

kð4akÞ�1ða2
k � 1Þ sinðukÞd1i ð63Þ
B.2. Series for the vectors ukðsÞ and vkðsÞ

Series for the vectors ukðsÞ and vkðsÞ (Eqs. (19) and (20))
are derived using the following expansions of the matrices
FklðsÞ and GklðsÞ:

FklðsÞ ¼
X1

p¼0

XMp

m¼�p

sp

ðln sÞm Fkl
pm þ R4ðs;M0;M1Þ ð64Þ

GklðsÞ ¼ Gkl
00 þ sGkl

10 þ s ln sGkl
1;�1 þOðs2ln2sÞ ð65Þ

where the remainder R4ðs;M0;M1Þ is of the order given by
expression (33), and the ðNk þ 1Þ � ðNl þ 1Þ-dimensional
matrix coefficients Fkl

pm and the N k � Nl-dimensional matrix
coefficients Gkl

pm are given below:

Fkl
00ði; jÞ ¼

�di1 j ¼ 1

ð�1Þkði�1Þþlðj�1Þþ1 iþ j� 3

i� 1

 !
Ri�1

k Rj�1
l j P 2

8><>: ð66Þ

Fkl
01ði; jÞ ¼

2 lnðRlÞdj1 i ¼ 1

ð�1Þkði�1Þ 2
i�1

Ri�1
k dj1 i P 2

(
ð67Þ

Fkl
0m ¼ bm�1

l Fkl
01; m P 2 ð68Þ

Fkl
1;�1ði; jÞ ¼ ð�1Þkði�1Þþl4�1Ri�1

k RlðR2
l þ di2 � di1Þdj2 ð69Þ

Fkl
10ði; jÞ ¼

1
4
ðR2

l � R2
k � 1Þdi1 þ 1

2
ð�1ÞkRkdi2

j ¼ 1
1
4
Fkl

00ði; jÞ½R2
k þ R2

l ð1þ blÞ � ð1þ bÞ�
j ¼ 2; i ¼ 1

1
8
Fkl

00ði; jÞ½R2
k � 2þ 2R2

l ð1þ blÞ�
j ¼ i ¼ 2

1
4
Fkl

00ði; jÞ
R2

k
i þ 3�i

ði�1Þði�2Þ þ R2
l ð1þ blÞ

h i
j ¼ 2; i P 3

1
4
Fkl

00ði; jÞ
R2

k
i þ

R2
l

j�2
þ di2
ðj�1Þðj�2Þ � 1

iþj�3

h i
j P 3

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

ð70Þ

Fkl
1mði; jÞ ¼

dj1

2
ð�1Þkði�1Þbm�2

l Ri�1
k

�

blðR2
k ln Rl þ 1þ ln RlÞ þ R2

l ½ln Rlð2m� blÞ � b�
i ¼ 1

R2
k

2
bl � blð1þ 2 ln RlÞ þ R2

l ð2m� 2� blÞ
i ¼ 2

1
i�1

R2
k
i bl � bl

i�2
þ R2

l ð2m� 2� blÞ
h i
i P 3

8>>>>>>>>>><>>>>>>>>>>:
ð71Þ

where m P 1 in Eq. (71).
Gkl
00ði; jÞ ¼ ð�1Þkiþlj iþ j� 1

i

� �
Ri

kRj
l ð72Þ

Gkl
10ði; jÞ ¼

Gkl
00ði; jÞ

4
�

R2
k

2
� 1þ R2

l ð1þ blÞ
i ¼ j ¼ 1

R2
k

iþ1
� 1

i�1
þ R2

l ð1þ blÞ
i P 2; j ¼ 1

R2
k

iþ1
� 1

iþj�1
þ R2

l
j�1
� di1

jðj�1Þ
j P 2

8>>>>>>>>><>>>>>>>>>:
ð73Þ

Gkl
1;�1ði; jÞ ¼ 4�1Gkl

00ði; jÞðdi1 � R2
l Þdj1 ð74Þ

Substituting series (64) and (65) in formulae (19) and (20),
we get the following series for the vectors ukðsÞ and vkðsÞ:

ukðsÞ ¼
X1

p¼0

XMp

m¼�p

sp

ðln sÞm uk
pm þ R3ðs;M0;M1Þ ð75Þ

vkðsÞ ¼ vk
00 þ svk

10 þ s ln svk
1;�1 þOðs2ln2sÞ ð76Þ

where the remainder R3ðs;M0;M1Þ is of the order given by
expression (33), and the ðN k þ 1Þ-dimensional vectors uk

pm

and the N k-dimensional vectors vk
pm are found as

uk
00 ¼ ck þ Fkl

00cl; vk
00 ¼ dk þGkl

00dl; vk
1m ¼ Gkl

1mdl ð77Þ
uk

pm ¼ Fkl
pmcl ðp2 þ m2 6¼ 0Þ ð78Þ
B.3. Series for the inverse matrices

The matrices Uk
pm and Vk

pm, involved in series (37) and
(38) for the matrices UkðsÞ and VkðsÞ, may be found using
Eqs. (19) and (20) and series (64) and (65). For example,
the first several coefficients in series (37) and (38) are found
as

Uk
00 ¼ INkþ1 � Fkl

00Flk
00; Vk

00 ¼ INk �Gkl
00Glk

00 ð79Þ
Uk

01 ¼ �Fkl
00Flk

01 � Fkl
01Flk

00 ð80Þ
Uk

02 ¼ �Fkl
00Flk

02 � Fkl
01Flk

01 � Fkl
02Flk

00 ð81Þ

The matrices eVk
pm, involved in series (35), are found aseVk

00 ¼ ½V
kð0Þ��1 ¼ ½INk �Gkl

00Glk
00�
�1 and eVk

1m ¼ �eVk
00Vk

1m
eVk

00

ðm ¼ �1; 0Þ.
The matrices eUk

pm involved in series (34) are found using
the routine described in Section 5.1. The two correspond-
ing simultaneous equations for the matrix eUk

pm have the fol-
lowing form:

Uk
00
eUk

pm ¼ Rk
0pm; ½nk�TUk

01
eUk

pm ¼ ½nk�TRk
1pm ð82Þ

where nk is the annihilating vector (Section 5.1). The matri-
ces Rk

npm ðn ¼ 0; 1 and p ¼ 0; 1Þ involved in the right-hand
sides of Eqs. (82) are given by

Rk
n0m ¼ d0;mþnINkþ1 �

Xm�1

i¼�1

Uk
0;mþn�i

eUk
0i ðp ¼ 0Þ ð83Þ

Rk
n1m ¼ �

Xmþ1þn

i¼�1

Uk
1;mþn�i

eUk
0i �

Xm

i¼�1

Uk
0;mþn�iþ1

eUk
1;i�1 ðp ¼ 1Þ

ð84Þ
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Each summation in expressions (83) and (84) is present
only when its lower summation limit is not higher than
its upper summation limit.

B.4. Series for the transformed temperature bT ðx; sÞ
A0mðxÞ ¼

X2

k¼1

Xm

p¼�1

Xm�p

i¼0

½ak
0iðxÞ�

T eUk
0puk

0;m�p�i;m P 1 ð85Þ

A1mðxÞ ¼ ðd0m þ d�1;mÞ
X2

k¼1

ð½bk
00ðxÞ�

TðeVk
00vk

1m þ eVk
1mvk

00Þ

þ ½bk
1mðxÞ�

T eVk
00vk

00Þ

þ
X2

k¼1

Xmþ1

p¼�1

Xm�p

i¼�1

ð½ak
1iðxÞ�

T eUk
0puk

0;m�p�i

þ ½ak
0;m�p�iðxÞ�

T eUk
0puk

1iÞ

þ
X2

k¼1

Xm

p¼�2

Xm�p

i¼0

½ak
0iðxÞ�

T eUk
1puk

0;m�p�i; m P �2

ð86Þ
2 Formulae for the coefficients Bp;i
m�i were derived from a more general

formula given in [23], where a coefficient Bm;�i
s corresponds to our Bm;i

s . The
numerical values of some of the coefficients Bm;�i

s are tabulated in [23] as
well. We present here the formulae for the particular coefficients Bp;i

m�i
which are more convenient in use.
Appendix C. Steady-state solution

The steady-state temperature T sðxÞ and the steady-state
flux H kðukÞ ¼ �½oT sðxÞ

ork
�Lk

at the boundary Lk are obtained as

T sðxÞ ¼
X2

k¼1

mk
0;�1ðuk

01 þ 2 lnðrk=RkÞuk
00Þ

h
þ½ak

00ðxÞ�
T eUk

00uk
00 þ ½bk

00ðxÞ�
T eVk

00vk
00

i
ð87Þ

H kðukÞ ¼ �
X2

p¼1

2

rp

orp

ork
m

p
0;�1u

p
00 þ

oap
00ðxÞ
ork

� �T eUp
00u

p
00

"

þ obp
00ðxÞ
ork

� �T eVp
00v

p
00

#
Lk

ð88Þ

Vectors uk
01, uk

00, ak
00ðxÞ, bk

00ðxÞ, vk
00 and matrices eUk

00;
eVk

00,
involved in Eq. (87), are defined in Appendix B, and the
matrix mk

0;�1 is defined below. Derivatives, involved in
Eq. (88), can be obtained using geometric relations between
polar coordinates ðr1;u1Þ and ðr2;u2Þ.

Matrix mk
0;�1 is 1� ðN k þ 1Þ-dimensional. It is found as

mk
0;�1 ¼ ðlkÞ

�1½nk�T, where nk is the annihilating vector (Sec-
tion 5.1), and the scalar factor lk is equal to the first com-
ponent of the vector ½Uk

01�
T
nk, that is

½Uk
01�

T
nk ¼

lk

. . .

� �
ð89Þ

Matrix Uk
01 is defined in Section B.3.

Appendix D. Coefficients of the series in the time domain

The coefficients of series (44) are found as

KpmðxÞ ¼
Xm�p

i¼1

ð�1ÞiBp;i
m�iApiðxÞ ðp ¼ 0; 1; m P p þ 1Þ ð90Þ

K1;�1ðxÞ ¼ 2A1;�2ðxÞ; K10ðxÞ ¼ 2cA1;�2ðxÞ � A1;�1ðxÞ;
K11ðxÞ ¼ 0 ð91Þ
where the coefficients ApiðxÞ are given in Section B.4, and
the coefficients Bp;i

m�i are listed below2

B0;i
0 ¼ 1; B0;i

1 ¼ �ci; B1;i
1 ¼ �i;

B0;i
2 ¼ ðc2 � p2=6Þ

iþ 1

2

� �
ð92Þ

B1;i
2 ¼ 2c

iþ 1

2

� �
;

B0;i
3 ¼ ð�c3 þ cp2=2þ wð2Þð1ÞÞ

iþ 2

3

� �
ð93Þ

B0;i
4 ¼ ð�c2p2 þ p4=60� 4cwð2Þð1ÞÞ

iþ 3

4

� �
ð94Þ

B0;i
5 ¼ �c5 þ 5c3p2

3
� cp4

12
þ 10c2 � 5p2

3

� �
wð2Þð1Þ

�
þwð4Þð1Þ

i iþ 4

5

� �
ð95Þ

The notation wðnÞð1Þ is used above to denote the
polygamma function wðnÞðxÞ [21] at x ¼ 1. The following
values of the polygamma function wð2Þð1Þ and wð4Þð1Þ
were computed using the software Mathematica:
wð2Þð1Þ ¼ �2:4041138063191886 and wð4Þð1Þ ¼
�24:8862661234408782.
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